Role of NF-kappaB-dependent caveolin-1 expression in the mechanism of increased endothelial permeability induced by lipopolysaccharide.
نویسندگان
چکیده
We investigated the role of NF-kappaB activation by the bacterial product lipopolysaccharide (LPS) in inducing caveolin-1 (Cav-1) expression and its consequence in contributing to the leakiness of the endothelial barrier. We observed that LPS challenge of human lung microvascular endothelial cells induced concentration- and time-dependent increases in expression of Cav-1 mRNA and protein. The NEMO (NF-kappaB essential modifier binding domain)-binding domain peptide (IkB kinase (IKK)-NEMO-binding domain (NBD) peptide), which prevents NF-kappaB activation by inhibiting the interaction of IKKgamma with the IKK complex, blocked LPS-induced Cav-1 mRNA and protein expression. Knockdown of NF-kappaB subunit p65/RelA expression with small interfering RNA also prevented LPS-induced Cav-1 expression. Caveolae open to the apical and basal plasmalemma of endothelial cells increased 2-4-fold within 4 h of LPS exposure. IKK-NBD peptide markedly reduced the LPS-induced increase in the number of caveolae as well as transendothelial albumin permeability. These observations were recapitulated in mouse studies in which IKK-NBD peptide prevented Cav-1 expression and interfered with the increase in lung microvessel permeability induced by LPS. Thus, LPS mediates NF-kappaB-dependent Cav-1 expression that results in increased caveolae number and thereby contributes to the mechanism of increased transendothelial albumin permeability.
منابع مشابه
Caveolin-1 regulates NF-kappaB activation and lung inflammatory response to sepsis induced by lipopolysaccharide.
Caveolin-1, the principal structural and signaling protein of caveolae, is implicated in NO-mediated cell signaling events, but its precise role in inflammation is not well understood. Using caveolin-1-knockout (Cav-1(-/-)) mice, we addressed the role of caveolin-1 in the lung inflammatory response to sepsis induced by i.p. injection of LPS. LPS-challenged wild-type (WT) lungs exhibited signifi...
متن کاملHyperglycemia- Induced NF-κB Activation Increases microRNA-146a Expression in Human Umbilical Vein Endothelial Cells
Background & objectives: Nuclear Factor kappa B (NF-κB), a master switch transcription factor, plays a critical role in the progression and development of hyperglycemia-induced microangiopathy. Hyperglycemia activates NF-κB, and subsequently increases pro-inflammatory cytokines such as TNF-α, IL-6 and IL-1β leading to development of inflammation. Some new studies have revealed the involvement o...
متن کاملThe effect of omega- 3 polyunsaturated fatty acids on endothelial tight junction occludin expression in rat aorta during lipopolysaccharide-induced inflammation
Objective(s): Occludin is essential for proper assembly of tight junctions (TJs) which regulate paracellular endothelial permeability. Omega-3 polyunsaturated fatty acids (Ω-3 PUFA) protect endothelial barrier function against injury. Materials and Methods: We examined anti-inflammatory effect of Ω-3 PUFA intake (30 mg/kg/day for 10 days) on expression and location of occludin in the aorta of ...
متن کاملPyrrolidine dithiocarbamate restores endothelial cell membrane integrity and attenuates monocrotaline-induced pulmonary artery hypertension.
Monocrotaline (MCT)-induced pulmonary artery hypertension (PAH) in rats is preceded by an inflammatory response, progressive endothelial cell membrane disruption, reduction in the expression of caveolin-1, and reciprocal activation of STAT3 (PY-STAT3). Superoxide and NF-kappaB have been implicated in PAH. To evaluate the role of caveolin-1, PY-STAT3 activation, and superoxide in PAH, MCT-inject...
متن کاملThe role of caveolin-1 in PCB77-induced eNOS phosphorylation in human-derived endothelial cells.
Polychlorinated biphenyls (PCBs) may contribute to the pathology of atherosclerosis by activating inflammatory responses in vascular endothelial cells. Endothelial nitric oxide synthase (eNOS) is colocalized with caveolae and is a critical regulator of vascular homeostasis. PCBs may be proatherogenic by causing dysfunctional eNOS signaling. The objective of this study was to investigate the rol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 283 7 شماره
صفحات -
تاریخ انتشار 2008